Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Distributed Feature Learning in Network Traffic Classification for Internet of Things (2109.14696v1)

Published 29 Sep 2021 in cs.NI and cs.LG

Abstract: The plethora of Internet of Things (IoT) devices leads to explosive network traffic. The network traffic classification (NTC) is an essential tool to explore behaviours of network flows, and NTC is required for Internet service providers (ISPs) to manage the performance of the IoT network. We propose a novel network data representation, treating the traffic data as a series of images. Thus, the network data is realized as a video stream to employ time-distributed (TD) feature learning. The intra-temporal information within the network statistical data is learned using convolutional neural networks (CNN) and long short-term memory (LSTM), and the inter pseudo-temporal feature among the flows is learned by TD multi-layer perceptron (MLP). We conduct experiments using a large data-set with more number of classes. The experimental result shows that the TD feature learning elevates the network classification performance by 10%.

Citations (5)

Summary

We haven't generated a summary for this paper yet.