Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Learning over Next-Generation Ethernet Passive Optical Networks (2109.14593v1)

Published 29 Sep 2021 in cs.NI and cs.PF

Abstract: Federated Learning (FL) is a distributed ML type of processing that preserves the privacy of user data, sharing only the parameters of ML models with a common server. The processing of FL requires specific latency and bandwidth demands that need to be fulfilled by the operation of the communication network. This paper introduces a Dynamic Wavelength and Bandwidth Allocation algorithm for Quality of Service (QoS) provisioning for FL traffic over 50 Gb/s Ethernet Passive Optical Networks. The proposed algorithm prioritizes FL traffic and reduces the delay of FL and delay-critical applications supported on the same infrastructure.

Citations (6)

Summary

We haven't generated a summary for this paper yet.