Geometry and causal flux in multi-loop Feynman diagrams
Abstract: In this review, we discuss recent developments concerning efficient calculations of multi-loop multi-leg scattering amplitudes. Inspired by the remarkable properties of the Loop-Tree Duality (LTD), we explain how to reconstruct an integrand level representation of scattering amplitudes which only contains physical singularities. These so-called causal representations can be derived from connected binary partitions of Feynman diagrams, properly entangled according to specific rules. We will focus on the detection of flux orientations which are compatible with causality, describing the implementation of a quantum algorithm to identify such configurations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.