Papers
Topics
Authors
Recent
2000 character limit reached

Sharp multiple testing boundary for sparse sequences

Published 28 Sep 2021 in math.ST and stat.TH | (2109.13601v2)

Abstract: This work investigates multiple testing by considering minimax separation rates in the sparse sequence model, when the testing risk is measured as the sum FDR+FNR (False Discovery Rate plus False Negative Rate). First using the popular beta-min separation condition, with all nonzero signals separated from $0$ by at least some amount, we determine the sharp minimax testing risk asymptotically and thereby explicitly describe the transition from "achievable multiple testing with vanishing risk" to "impossible multiple testing". Adaptive multiple testing procedures achieving the corresponding optimal boundary are provided: the Benjamini--Hochberg procedure with a properly tuned level, and an empirical Bayes $\ell$-value (`local FDR') procedure. We prove that the FDR and FNR make non-symmetric contributions to the testing risk for most optimal procedures, the FNR part being dominant at the boundary. The multiple testing hardness is then investigated for classes of arbitrary sparse signals. A number of extensions, including results for classification losses and convergence rates in the case of large signals, are also investigated.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.