Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Rates and Tradeoffs in Multiple Testing (1705.05391v1)

Published 15 May 2017 in math.ST, stat.AP, stat.ME, and stat.TH

Abstract: Multiple hypothesis testing is a central topic in statistics, but despite abundant work on the false discovery rate (FDR) and the corresponding Type-II error concept known as the false non-discovery rate (FNR), a fine-grained understanding of the fundamental limits of multiple testing has not been developed. Our main contribution is to derive a precise non-asymptotic tradeoff between FNR and FDR for a variant of the generalized Gaussian sequence model. Our analysis is flexible enough to permit analyses of settings where the problem parameters vary with the number of hypotheses $n$, including various sparse and dense regimes (with $o(n)$ and $\mathcal{O}(n)$ signals). Moreover, we prove that the Benjamini-Hochberg algorithm as well as the Barber-Cand`{e}s algorithm are both rate-optimal up to constants across these regimes.

Summary

We haven't generated a summary for this paper yet.