Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Informative Path Planning Using Deep Reinforcement Learning for UAV-based Active Sensing (2109.13570v2)

Published 28 Sep 2021 in cs.RO and cs.LG

Abstract: Aerial robots are increasingly being utilized for environmental monitoring and exploration. However, a key challenge is efficiently planning paths to maximize the information value of acquired data as an initially unknown environment is explored. To address this, we propose a new approach for informative path planning based on deep reinforcement learning (RL). Combining recent advances in RL and robotic applications, our method combines tree search with an offline-learned neural network predicting informative sensing actions. We introduce several components making our approach applicable for robotic tasks with high-dimensional state and large action spaces. By deploying the trained network during a mission, our method enables sample-efficient online replanning on platforms with limited computational resources. Simulations show that our approach performs on par with existing methods while reducing runtime by 8-10x. We validate its performance using real-world surface temperature data.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com