2000 character limit reached
On the $k$-resultant modulus set problem on varieties over finite fields (2109.13506v1)
Published 28 Sep 2021 in math.NT
Abstract: Let $V\subset \mathbb{F}qd$ be a \textit{regular} variety, $k\ge 3$ is an integer and $A\subseteq V$. Covert, Koh, and Pi (2017) proved the following generalization of the Erd\H{o}s-Falconer distance problem: If $|A|\gg q{\frac{d-1}{2}+\frac{1}{k-1}}$, then we have [\Delta{k}(A)={|x_1+\cdots+x_k|\colon x_i\in A}\supseteq \mathbb{F}_q*.] In this paper, we provide improvements and extensions of their result.