Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring More When It Needs in Deep Reinforcement Learning (2109.13477v1)

Published 28 Sep 2021 in cs.LG and cs.AI

Abstract: We propose a exploration mechanism of policy in Deep Reinforcement Learning, which is exploring more when agent needs, called Add Noise to Noise (AN2N). The core idea is: when the Deep Reinforcement Learning agent is in a state of poor performance in history, it needs to explore more. So we use cumulative rewards to evaluate which past states the agents have not performed well, and use cosine distance to measure whether the current state needs to be explored more. This method shows that the exploration mechanism of the agent's policy is conducive to efficient exploration. We combining the proposed exploration mechanism AN2N with Deep Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC) algorithms, and apply it to the field of continuous control tasks, such as halfCheetah, Hopper, and Swimmer, achieving considerable improvement in performance and convergence speed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Youtian Guo (2 papers)
  2. Qi Gao (77 papers)

Summary

We haven't generated a summary for this paper yet.