Papers
Topics
Authors
Recent
2000 character limit reached

ML4ML: Automated Invariance Testing for Machine Learning Models (2109.12926v2)

Published 27 Sep 2021 in cs.LG

Abstract: In ML workflows, determining the invariance qualities of an ML model is a common testing procedure. Traditionally, invariance qualities are evaluated using simple formula-based scores, e.g., accuracy. In this paper, we show that testing the invariance qualities of ML models may result in complex visual patterns that cannot be classified using simple formulas. In order to test ML models by analyzing such visual patterns automatically using other ML models, we propose a systematic framework that is applicable to a variety of invariance qualities. We demonstrate the effectiveness and feasibility of the framework by developing ML4ML models (assessors) for determining rotation-, brightness-, and size-variances of a collection of neural networks. Our testing results show that the trained ML4ML assessors can perform such analytical tasks with sufficient accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.