Papers
Topics
Authors
Recent
Search
2000 character limit reached

PM-FSM: Policies Modulating Finite State Machine for Robust Quadrupedal Locomotion

Published 26 Sep 2021 in cs.RO and cs.LG | (2109.12696v2)

Abstract: Deep reinforcement learning (deep RL) has emerged as an effective tool for developing controllers for legged robots. However, vanilla deep RL often requires a tremendous amount of training samples and is not feasible for achieving robust behaviors. Instead, researchers have investigated a novel policy architecture by incorporating human experts' knowledge, such as Policies Modulating Trajectory Generators (PMTG). This architecture builds a recurrent control loop by combining a parametric trajectory generator (TG) and a feedback policy network to achieve more robust behaviors. To take advantage of human experts' knowledge but eliminate time-consuming interactive teaching, researchers have investigated a novel architecture, Policies Modulating Trajectory Generators (PMTG), which builds a recurrent control loop by combining a parametric trajectory generator (TG) and a feedback policy network to achieve more robust behaviors using intuitive prior knowledge. In this work, we propose Policies Modulating Finite State Machine (PM-FSM) by replacing TGs with contact-aware finite state machines (FSM), which offer more flexible control of each leg. Compared with the TGs, FSMs offer high-level management on each leg motion generator and enable a flexible state arrangement, which makes the learned behavior less vulnerable to unseen perturbations or challenging terrains. This invention offers an explicit notion of contact events to the policy to negotiate unexpected perturbations. We demonstrated that the proposed architecture could achieve more robust behaviors in various scenarios, such as challenging terrains or external perturbations, on both simulated and real robots. The supplemental video can be found at: https://youtu.be/78cboMqTkJQ.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.