Papers
Topics
Authors
Recent
Search
2000 character limit reached

AdaInject: Injection Based Adaptive Gradient Descent Optimizers for Convolutional Neural Networks

Published 26 Sep 2021 in cs.LG and math.OC | (2109.12504v2)

Abstract: The convolutional neural networks (CNNs) are generally trained using stochastic gradient descent (SGD) based optimization techniques. The existing SGD optimizers generally suffer with the overshooting of the minimum and oscillation near minimum. In this paper, we propose a new approach, hereafter referred as AdaInject, for the gradient descent optimizers by injecting the second order moment into the first order moment. Specifically, the short-term change in parameter is used as a weight to inject the second order moment in the update rule. The AdaInject optimizer controls the parameter update, avoids the overshooting of the minimum and reduces the oscillation near minimum. The proposed approach is generic in nature and can be integrated with any existing SGD optimizer. The effectiveness of the AdaInject optimizer is explained intuitively as well as through some toy examples. We also show the convergence property of the proposed injection based optimizer. Further, we depict the efficacy of the AdaInject approach through extensive experiments in conjunction with the state-of-the-art optimizers, namely AdamInject, diffGradInject, RadamInject, and AdaBeliefInject on four benchmark datasets. Different CNN models are used in the experiments. A highest improvement in the top-1 classification error rate of $16.54\%$ is observed using diffGradInject optimizer with ResNeXt29 model over the CIFAR10 dataset. Overall, we observe very promising performance improvement of existing optimizers with the proposed AdaInject approach. The code is available at: \url{https://github.com/shivram1987/AdaInject}.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub