Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topic Model Robustness to Automatic Speech Recognition Errors in Podcast Transcripts (2109.12306v1)

Published 25 Sep 2021 in cs.IR and cs.LG

Abstract: For a multilingual podcast streaming service, it is critical to be able to deliver relevant content to all users independent of language. Podcast content relevance is conventionally determined using various metadata sources. However, with the increasing quality of speech recognition in many languages, utilizing automatic transcriptions to provide better content recommendations becomes possible. In this work, we explore the robustness of a Latent Dirichlet Allocation topic model when applied to transcripts created by an automatic speech recognition engine. Specifically, we explore how increasing transcription noise influences topics obtained from transcriptions in Danish; a low resource language. First, we observe a baseline of cosine similarity scores between topic embeddings from automatic transcriptions and the descriptions of the podcasts written by the podcast creators. We then observe how the cosine similarities decrease as transcription noise increases and conclude that even when automatic speech recognition transcripts are erroneous, it is still possible to obtain high-quality topic embeddings from the transcriptions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
Citations (1)

Summary

We haven't generated a summary for this paper yet.