Papers
Topics
Authors
Recent
Search
2000 character limit reached

An embarrassingly simple comparison of machine learning algorithms for indoor scene classification

Published 25 Sep 2021 in cs.CV and cs.LG | (2109.12261v1)

Abstract: With the emergence of autonomous indoor robots, the computer vision task of indoor scene recognition has gained the spotlight. Indoor scene recognition is a challenging problem in computer vision that relies on local and global features in a scene. This study aims to compare the performance of five machine learning algorithms on the task of indoor scene classification to identify the pros and cons of each classifier. It also provides a comparison of low latency feature extractors versus enormous feature extractors to understand the performance effects. Finally, a simple MnasNet based indoor classification system is proposed, which can achieve 72% accuracy at 23 ms latency.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.