Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An embarrassingly simple comparison of machine learning algorithms for indoor scene classification (2109.12261v1)

Published 25 Sep 2021 in cs.CV and cs.LG

Abstract: With the emergence of autonomous indoor robots, the computer vision task of indoor scene recognition has gained the spotlight. Indoor scene recognition is a challenging problem in computer vision that relies on local and global features in a scene. This study aims to compare the performance of five machine learning algorithms on the task of indoor scene classification to identify the pros and cons of each classifier. It also provides a comparison of low latency feature extractors versus enormous feature extractors to understand the performance effects. Finally, a simple MnasNet based indoor classification system is proposed, which can achieve 72% accuracy at 23 ms latency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (1)

Summary

We haven't generated a summary for this paper yet.