Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards practical object detection for weed spraying in precision agriculture (2109.11048v1)

Published 22 Sep 2021 in cs.CV and cs.RO

Abstract: The evolution of smaller, faster processors and cheaper digital storage mechanisms across the last 4-5 decades has vastly increased the opportunity to integrate intelligent technologies in a wide range of practical environments to address a broad spectrum of tasks. One exciting application domain for such technologies is precision agriculture, where the ability to integrate on-board machine vision with data-driven actuation means that farmers can make decisions about crop care and harvesting at the level of the individual plant rather than the whole field. This makes sense both economically and environmentally. However, the key driver for this capability is fast and robust machine vision -- typically driven by ML solutions and dependent on accurate modelling. One critical challenge is that the bulk of ML-based vision research considers only metrics that evaluate the accuracy of object detection and do not assess practical factors. This paper introduces three metrics that highlight different aspects relevant for real-world deployment of precision weeding and demonstrates their utility through experimental results.

Citations (20)

Summary

We haven't generated a summary for this paper yet.