Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geo-Context Aware Study of Vision-Based Autonomous Driving Models and Spatial Video Data (2109.10895v1)

Published 20 Aug 2021 in cs.HC and cs.LG

Abstract: Vision-based deep learning (DL) methods have made great progress in learning autonomous driving models from large-scale crowd-sourced video datasets. They are trained to predict instantaneous driving behaviors from video data captured by on-vehicle cameras. In this paper, we develop a geo-context aware visualization system for the study of Autonomous Driving Model (ADM) predictions together with large-scale ADM video data. The visual study is seamlessly integrated with the geographical environment by combining DL model performance with geospatial visualization techniques. Model performance measures can be studied together with a set of geospatial attributes over map views. Users can also discover and compare prediction behaviors of multiple DL models in both city-wide and street-level analysis, together with road images and video contents. Therefore, the system provides a new visual exploration platform for DL model designers in autonomous driving. Use cases and domain expert evaluation show the utility and effectiveness of the visualization system.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com