Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Representation Learning for Reliable Robotic Monitoring of Fruit Anomalies (2109.10135v2)

Published 21 Sep 2021 in cs.RO, cs.CV, and cs.LG

Abstract: Data augmentation can be a simple yet powerful tool for autonomous robots to fully utilise available data for selfsupervised identification of atypical scenes or objects. State-of-the-art augmentation methods arbitrarily embed "structural" peculiarity on typical images so that classifying these artefacts can provide guidance for learning representations for the detection of anomalous visual signals. In this paper, however, we argue that learning such structure-sensitive representations can be a suboptimal approach to some classes of anomaly (e.g., unhealthy fruits) which could be better recognised by a different type of visual element such as "colour". We thus propose Channel Randomisation as a novel data augmentation method for restricting neural networks to learn encoding of "colour irregularity" whilst predicting channel-randomised images to ultimately build reliable fruit-monitoring robots identifying atypical fruit qualities. Our experiments show that (1) this colour-based alternative can better learn representations for consistently accurate identification of fruit anomalies in various fruit species, and also, (2) unlike other methods, the validation accuracy can be utilised as a criterion for early stopping of training in practice due to positive correlation between the performance in the self-supervised colour-differentiation task and the subsequent detection rate of actual anomalous fruits. Also, the proposed approach is evaluated on a new agricultural dataset, Riseholme-2021, consisting of 3.5K strawberry images gathered by a mobile robot, which we share online to encourage active agri-robotics research.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com