Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mass and energy cascade in collisionless dark matter flow and relevant constraints on the dark matter particle mass (2109.09985v3)

Published 21 Sep 2021 in astro-ph.CO, astro-ph.GA, and physics.flu-dyn

Abstract: The cascade phenomenon is fundamental to turbulence, a typical non-equilibrium system. In turbulence, energy is cascaded from large to small scales, where it is dissipated by fluid viscosity. Using Illustris and Virgo simulations, this paper presents the cascade in non-equilibrium collisionless dark matter flow. The cosmic energy of dark matter decreases with time, as if "dissipated" due to the expanding background. This is facilitated by the energy cascade from large to small haloes via halo merging and from large to small scales in individual haloes via particle migration in fluctuating non-uniform potential, such that the cosmic energy is "dissipated" on small scales. Inverse mass cascade across haloes of different sizes leads to a random walk of haloes in halo mass space. The halo mass function is naturally given by the Fokker-Planck equation for halo random walk. Similarly, the random walk of particles in haloes leads to the distribution of particles. The halo density profile can also be analytically derived. Universal scaling laws were identified for the halo density, mass, and velocity dispersion. The different inner density slopes of simulated haloes can be explained by the nonzero net mass and energy flux in individual haloes. The mass and energy cascade establishes a statistically steady state to continuously release energy and maximize entropy. The key feature of this state is scale-independent rates of cascade such that the statistical structures of the haloes are self-similar and scale-free, and there is no net accumulation of mass and energy on any intermediate scales. Since the waiting time and jumping length for particle random walk depends on the particle mass $m_p$, new mass constraints can be identified as $m_p\ge 10{-15}$kg or $10{12}$GeV. This constraint excludes standard WIMPs and suggests a heavy dark matter scenario (superheavy right-handed neutrinos, etc.).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. J. Neyman and E. L. Scott, Astrophysical Journal 116, 144 (1952).
  2. A. Cooray and R. Sheth, Physics Reports-Review Section of Physics Letters 372, 1 (2002).
  3. W. H. Press and P. Schechter, Astrophysical Journal 187, 425 (1974).
  4. K. Tomita, Progress of Theoretical Physics 42, 9 (1969).
  5. J. E. Gunn and J. R. Gott, Astrophysical Journal 176, 1 (1972).
  6. M. Musso and R. K. Sheth, Monthly Notices of the Royal Astronomical Society: Letters 423, L102 (2012).
  7. A. Paranjape and R. K. Sheth, Monthly Notices of the Royal Astronomical Society 426, 2789 (2012).
  8. M. Maggiore and A. Riotto, The Astrophysical Journal 711, 907 (2010).
  9. A. Del Popolo and P. Kroupa, Astronomy & Astrophysics 502, 733 (2009).
  10. E. Bertschinger, Astrophysical Journal Supplement Series 58, 39 (1985).
  11. J. A. Fillmore and P. Goldreich, Astrophysical Journal 281, 1 (1984).
  12. J. Diemand and B. Moore, Advanced Science Letters 4, 297 (2011), arXiv:0906.4340 [astro-ph.CO] .
  13. W. J. G. de Blok and A. Bosma, Astronomy & Astrophysics 385, 816 (2002), arXiv:astro-ph/0201276 [astro-ph] .
  14. R. Kuzio de Naray and T. Kaufmann, Monthly Notices of the Royal Astronomical Society 414, 3617 (2011), https://academic.oup.com/mnras/article-pdf/414/4/3617/18715139/mnras0414-3617.pdf .
  15. L. F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, UK, 1922).
  16. R. H. Kraichnan, Physics of Fluids 10, 1417 (1967).
  17. Z. Xu, A&A 675, A92 (2023a), arXiv:2110.03126 [astro-ph] .
  18. P. J. E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, Princeton, NJ, 1980).
  19. Z. Xu, arXiv e-prints , arXiv:2202.04054 (2022a).
  20. W. M. Irvine, Local Irregularities in a Universe Satisfying the Cosmological Principle, Thesis, HARVARD UNIVERSITY (1961).
  21. D. Layzer, Astrophysical Journal 138, 174 (1963).
  22. Z. Xu, arXiv e-prints , arXiv:2202.07240 (2022b).
  23. Z. Xu, Scientific Reports 13, 16531 (2023b), arXiv:2210.01200 [astro-ph] .
  24. R. L. Stratonovich, SIAM Journal on Control 4, 362–371 (1966).
  25. Z. Xu, Scientific Reports 13, 4165 (2023c), arXiv:2209.03313 [astro-ph] .
  26. Z. Xu, Resarch Square  (2024), 10.21203/rs.3.rs-4039565, Resarch Square:4039565 [astro-ph] .
  27. P. J. E. Peebles, The Astrophysical Journal 189, L51 (1974).
  28. M. Davis and P. J. E. Peebles, Astrophysical Journal Supplement Series 34, 425 (1977).
  29. A. N. Kolmogoroff, Comptes Rendus De L Academie Des Sciences De L Urss 32, 16 (1941).
  30. Z. Xu, “Dark matter flow dataset part i: Halo-based statistics from cosmological n-body simulation,”  (2022c).
  31. Z. Xu, “Dark matter flow dataset part ii: Correlation-based statistics from cosmological n-body simulation,”  (2022d).
  32. Z. Xu, “A comparative study of dark matter flow & hydrodynamic turbulence and its applications,”  (2022e).
  33. Z. Xu, “Dark matter flow dataset,”  (2022f).
  34. Z. Xu, arXiv e-prints , arXiv:2202.06515 (2022g).
  35. R. G. Bower, Monthly Notices of the Royal Astronomical Society 248, 332 (1991).
  36. Z. Xu, arXiv e-prints , arXiv:2110.05784 (2021).
  37. R. K. Sheth and G. Tormen, Monthly Notices of the Royal Astronomical Society 308, 119 (1999).
  38. R. K. Sheth and G. Tormen, Monthly Notices of the Royal Astronomical Society 329, 61 (2002).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com