Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Object Detection in Thermal Spectrum for Advanced Driver-Assistance Systems (ADAS) (2109.09854v2)

Published 20 Sep 2021 in cs.CV

Abstract: Object detection in thermal infrared spectrum provides more reliable data source in low-lighting conditions and different weather conditions, as it is useful both in-cabin and outside for pedestrian, animal, and vehicular detection as well as for detecting street-signs & lighting poles. This paper is about exploring and adapting state-of-the-art object detection and classifier framework on thermal vision with seven distinct classes for advanced driver-assistance systems (ADAS). The trained network variants on public datasets are validated on test data with three different test approaches which include test-time with no augmentation, test-time augmentation, and test-time with model ensembling. Additionally, the efficacy of trained networks is tested on locally gathered novel test-data captured with an uncooled LWIR prototype thermal camera in challenging weather and environmental scenarios. The performance analysis of trained models is investigated by computing precision, recall, and mean average precision scores (mAP). Furthermore, the trained model architecture is optimized using TensorRT inference accelerator and deployed on resource-constrained edge hardware Nvidia Jetson Nano to explicitly reduce the inference time on GPU as well as edge devices for further real-time onboard installations.

Citations (26)

Summary

We haven't generated a summary for this paper yet.