Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ACReL: Adversarial Conditional value-at-risk Reinforcement Learning (2109.09470v2)

Published 20 Sep 2021 in cs.LG

Abstract: In the classical Reinforcement Learning (RL) setting, one aims to find a policy that maximizes its expected return. This objective may be inappropriate in safety-critical domains such as healthcare or autonomous driving, where intrinsic uncertainties due to stochastic policies and environment variability may lead to catastrophic failures. This can be addressed by using the Conditional-Value-at-Risk (CVaR) objective to instill risk-aversion in learned policies. In this paper, we propose Adversarial Cvar Reinforcement Learning (ACReL), a novel adversarial meta-algorithm to optimize the CVaR objective in RL. ACReL is based on a max-min between a policy player and a learned adversary that perturbs the policy player's state transitions given a finite budget. We prove that, the closer the players are to the game's equilibrium point, the closer the learned policy is to the CVaR-optimal one with a risk tolerance explicitly related to the adversary's budget. We provide a gradient-based training procedure to solve the proposed game by formulating it as a Stackelberg game, enabling the use of deep RL architectures and training algorithms. Empirical experiments show that ACReL matches a CVaR RL state-of-the-art baseline for retrieving CVaR optimal policies, while also benefiting from theoretical guarantees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. M. Godbout (2 papers)
  2. M. Heuillet (1 paper)
  3. S. Chandra (63 papers)
  4. R. Bhati (1 paper)
  5. A. Durand (13 papers)

Summary

We haven't generated a summary for this paper yet.