Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Handling Unconstrained User Preferences in Dialogue (2109.08650v1)

Published 17 Sep 2021 in cs.CL

Abstract: A user input to a schema-driven dialogue information navigation system, such as venue search, is typically constrained by the underlying database which restricts the user to specify a predefined set of preferences, or slots, corresponding to the database fields. We envision a more natural information navigation dialogue interface where a user has flexibility to specify unconstrained preferences that may not match a predefined schema. We propose to use information retrieval from unstructured knowledge to identify entities relevant to a user request. We update the Cambridge restaurants database with unstructured knowledge snippets (reviews and information from the web) for each of the restaurants and annotate a set of query-snippet pairs with a relevance label. We use the annotated dataset to train and evaluate snippet relevance classifiers, as a proxy to evaluating recommendation accuracy. We show that with a pretrained transformer model as an encoder, an unsupervised/supervised classifier achieves a weighted F1 of .661/.856.

Citations (2)

Summary

We haven't generated a summary for this paper yet.