Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FSER: Deep Convolutional Neural Networks for Speech Emotion Recognition (2109.07916v1)

Published 15 Sep 2021 in eess.AS, cs.CV, and cs.HC

Abstract: Using mel-spectrograms over conventional MFCCs features, we assess the abilities of convolutional neural networks to accurately recognize and classify emotions from speech data. We introduce FSER, a speech emotion recognition model trained on four valid speech databases, achieving a high-classification accuracy of 95,05\%, over 8 different emotion classes: anger, anxiety, calm, disgust, happiness, neutral, sadness, surprise. On each benchmark dataset, FSER outperforms the best models introduced so far, achieving a state-of-the-art performance. We show that FSER stays reliable, independently of the language, sex identity, and any other external factor. Additionally, we describe how FSER could potentially be used to improve mental and emotional health care and how our analysis and findings serve as guidelines and benchmarks for further works in the same direction.

Citations (6)

Summary

We haven't generated a summary for this paper yet.