Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InceptionXML: A Lightweight Framework with Synchronized Negative Sampling for Short Text Extreme Classification (2109.07319v4)

Published 13 Sep 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Automatic annotation of short-text data to a large number of target labels, referred to as Short Text Extreme Classification, has found numerous applications including prediction of related searches and product recommendation. In this paper, we propose a convolutional architecture InceptionXML which is light-weight, yet powerful, and robust to the inherent lack of word-order in short-text queries encountered in search and recommendation. We demonstrate the efficacy of applying convolutions by recasting the operation along the embedding dimension instead of the word dimension as applied in conventional CNNs for text classification. Towards scaling our model to datasets with millions of labels, we also propose SyncXML pipeline which improves upon the shortcomings of the recently proposed dynamic hard-negative mining technique for label short-listing by synchronizing the label-shortlister and extreme classifier. SyncXML not only reduces the inference time to half but is also an order of magnitude smaller than state-of-the-art Astec in terms of model size. Through a comprehensive empirical comparison, we show that not only can InceptionXML outperform existing approaches on benchmark datasets but also the transformer baselines requiring only 2% FLOPs. The code for InceptionXML is available at https://github.com/xmc-aalto/inceptionxml.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets