Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentiment Analysis in Poems in Misurata Sub-dialect -- A Sentiment Detection in an Arabic Sub-dialect (2109.07203v1)

Published 15 Sep 2021 in cs.CL

Abstract: Over the recent decades, there has been a significant increase and development of resources for Arabic natural language processing. This includes the task of exploring Arabic Language Sentiment Analysis (ALSA) from Arabic utterances in both Modern Standard Arabic (MSA) and different Arabic dialects. This study focuses on detecting sentiment in poems written in Misurata Arabic sub-dialect spoken in Misurata, Libya. The tools used to detect sentiment from the dataset are Sklearn as well as Mazajak sentiment tool 1. Logistic Regression, Random Forest, Naive Bayes (NB), and Support Vector Machines (SVM) classifiers are used with Sklearn, while the Convolutional Neural Network (CNN) is implemented with Mazajak. The results show that the traditional classifiers score a higher level of accuracy as compared to Mazajak which is built on an algorithm that includes deep learning techniques. More research is suggested to analyze Arabic sub-dialect poetry in order to investigate the aspects that contribute to sentiments in these multi-line texts; for example, the use of figurative language such as metaphors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Azza Abugharsa (1 paper)
Citations (5)

Summary

We haven't generated a summary for this paper yet.