Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network Guided Evolutionary Fuzzing for Finding Traffic Violations of Autonomous Vehicles (2109.06126v4)

Published 13 Sep 2021 in cs.SE, cs.LG, cs.NE, and cs.RO

Abstract: Self-driving cars and trucks, autonomous vehicles (AVs), should not be accepted by regulatory bodies and the public until they have much higher confidence in their safety and reliability -- which can most practically and convincingly be achieved by testing. But existing testing methods are inadequate for checking the end-to-end behaviors of AV controllers against complex, real-world corner cases involving interactions with multiple independent agents such as pedestrians and human-driven vehicles. While test-driving AVs on streets and highways fails to capture many rare events, existing simulation-based testing methods mainly focus on simple scenarios and do not scale well for complex driving situations that require sophisticated awareness of the surroundings. To address these limitations, we propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used AV simulators' API grammars to generate semantically and temporally valid complex driving scenarios (sequences of scenes). To efficiently search for traffic violations-inducing scenarios in a large search space, we propose a constrained neural network (NN) evolutionary search method to optimize AutoFuzz. Evaluation of our prototype on one state-of-the-art learning-based controller, two rule-based controllers, and one industrial-grade controller in five scenarios shows that AutoFuzz efficiently finds hundreds of traffic violations in high-fidelity simulation environments. For each scenario, AutoFuzz can find on average 10-39% more unique traffic violations than the best-performing baseline method. Further, fine-tuning the learning-based controller with the traffic violations found by AutoFuzz successfully reduced the traffic violations found in the new version of the AV controller software.

Citations (59)

Summary

We haven't generated a summary for this paper yet.