Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PoKE: A Prompt-based Knowledge Eliciting Approach for Event Argument Extraction (2109.05190v3)

Published 11 Sep 2021 in cs.CL and cs.AI

Abstract: Eliciting knowledge from pre-trained LLMs via prompt-based learning has shown great potential in many natural language processing tasks. Whereas, the applications for more complex tasks such as event extraction are less studied since the design of prompt is not straightforward for the structured event containing various triggers and arguments. % Meanwhile, current conditional generation methods employ large encoder-decoder models, which are costly to train and serve. In this paper, we present a novel prompt-based approach, which elicits both the independent and joint knowledge about different events for event argument extraction. The experimental results on the benchmark ACE2005 dataset show the great advantages of our proposed approach. In particular, our approach is superior to the recent advanced methods in both fully-supervised and low-resource scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.