Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Tangent Kernel Perspective of Infinite Tree Ensembles (2109.04983v2)

Published 10 Sep 2021 in cs.LG and stat.ML

Abstract: In practical situations, the tree ensemble is one of the most popular models along with neural networks. A soft tree is a variant of a decision tree. Instead of using a greedy method for searching splitting rules, the soft tree is trained using a gradient method in which the entire splitting operation is formulated in a differentiable form. Although ensembles of such soft trees have been used increasingly in recent years, little theoretical work has been done to understand their behavior. By considering an ensemble of infinite soft trees, this paper introduces and studies the Tree Neural Tangent Kernel (TNTK), which provides new insights into the behavior of the infinite ensemble of soft trees. Using the TNTK, we theoretically identify several non-trivial properties, such as global convergence of the training, the equivalence of the oblivious tree structure, and the degeneracy of the TNTK induced by the deepening of the trees.

Citations (7)

Summary

We haven't generated a summary for this paper yet.