Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Philosophy to Interfaces: an Explanatory Method and a Tool Inspired by Achinstein's Theory of Explanation (2109.04171v1)

Published 9 Sep 2021 in cs.AI and cs.HC

Abstract: We propose a new method for explanations in AI and a tool to test its expressive power within a user interface. In order to bridge the gap between philosophy and human-computer interfaces, we show a new approach for the generation of interactive explanations based on a sophisticated pipeline of AI algorithms for structuring natural language documents into knowledge graphs, answering questions effectively and satisfactorily. Among the mainstream philosophical theories of explanation we identified one that in our view is more easily applicable as a practical model for user-centric tools: Achinstein's Theory of Explanation. With this work we aim to prove that the theory proposed by Achinstein can be actually adapted for being implemented into a concrete software application, as an interactive process answering questions. To this end we found a way to handle the generic (archetypal) questions that implicitly characterise an explanatory processes as preliminary overviews rather than as answers to explicit questions, as commonly understood. To show the expressive power of this approach we designed and implemented a pipeline of AI algorithms for the generation of interactive explanations under the form of overviews, focusing on this aspect of explanations rather than on existing interfaces and presentation logic layers for question answering. We tested our hypothesis on a well-known XAI-powered credit approval system by IBM, comparing CEM, a static explanatory tool for post-hoc explanations, with an extension we developed adding interactive explanations based on our model. The results of the user study, involving more than 100 participants, showed that our proposed solution produced a statistically relevant improvement on effectiveness (U=931.0, p=0.036) over the baseline, thus giving evidence in favour of our theory.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Francesco Sovrano (15 papers)
  2. Fabio Vitali (12 papers)
Citations (15)