MHE under parametric uncertainty -- Robust state estimation without informative data (2312.14049v1)
Abstract: In this paper, we study state estimation for general nonlinear systems with unknown parameters and persistent process and measurement noise. In particular, we are interested in stability properties of the state estimate in the absence of persistency of excitation (PE). With a simple academic example, we show that existing moving horizon estimation (MHE) approaches as well as classical adaptive observers can result in diverging state estimates in the absence of PE, even if the noise is small. We propose a novel MHE formulation involving a regularization based on a constant prior estimate of the unknown system parameters. Only assuming the existence of a stable estimator, we prove that the proposed MHE results in practically robustly stable state estimates even in the absence of PE. We discuss the relation of the proposed MHE formulation to state-of-the-art results from MHE, adaptive estimation, and functional estimation. The properties of the proposed MHE approach are illustrated with a numerical example of a car with unknown tire friction parameters.
- Y. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li, and Z. Chen, “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,” Renewable and Sustainable Energy Reviews, vol. 131, p. 110015, 2020.
- A. J. Pasadyn and T. F. Edgar, “Observability and state estimation for multiple product control in semiconductor manufacturing,” IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 4, pp. 592–604, 2005.
- F. M. Kashif, G. C. Verghese, V. Novak, M. Czosnyka, and T. Heldt, “Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure,” Science Translational Medicine, vol. 4, no. 129, 2012.
- M. Zanon, J. V. Frasch, and M. Diehl, “Nonlinear Moving Horizon Estimation for combined state and friction coefficient estimation in autonomous driving,” in Proc. European Control Conf., 2013, pp. 4130–4135.
- M. Boegli, T. De Laet, J. De Schutter, and J. Swevers, “Moving horizon for friction state and parameter estimation,” in Proc. European Control Conf., 2013, pp. 4142–4147.
- T. Polóni, B. Rohal-Ilkiv, and T. A. Johansen, “Damped one-mode vibration model state and parameter estimation via pre-filtered moving horizon observer,” IFAC Proceedings Volumes, vol. 43, no. 18, pp. 24–31, 2010.
- M. Abdollahpouri, G. Takács, and B. Rohaľ-Ilkiv, “Real-time moving horizon estimation for a vibrating active cantilever,” Mechanical Systems and Signal Processing, vol. 86, pp. 1–15, 2017.
- L. P. Russo and R. E. Young, “Moving-horizon state estimation applied to an industrial polymerization process,” Proc. American Control Conf., vol. 2, pp. 1129–1133, 1999.
- P. Kühl, M. Diehl, T. Kraus, J. P. Schlöder, and H. G. Bock, “A real-time algorithm for moving horizon state and parameter estimation,” Computers and Chemical Engineering, vol. 35, no. 1, pp. 71–83, 2011.
- A. Küpper, M. Diehl, J. P. Schlöder, H. G. Bock, and S. Engell, “Efficient moving horizon state and parameter estimation for SMB processes,” Journal of Process Control, vol. 19, no. 5, pp. 785–802, 2009.
- J. Valluru, P. Lakhmani, S. C. Patwardhan, and L. T. Biegler, “Development of moving window state and parameter estimators under maximum likelihood and Bayesian frameworks,” Journal of Process Control, vol. 60, pp. 48–67, 2017.
- T. Chen, N. F. Kirkby, and R. Jena, “Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation,” Computer Methods and Programs in Biomedicine, vol. 108, no. 3, pp. 973–983, 2012.
- A. Tuveri, C. S. Nakama, J. Matias, H. E. Holck, J. Jäschke, L. Imsland, and N. Bar, “A regularized Moving Horizon Estimator for combined state and parameter estimation in a bioprocess experimental application,” Computers & Chemical Engineering, vol. 172, p. 108183, 2023.
- D. Frick, A. Domahidi, M. Vukov, S. Mariethoz, M. Diehl, and M. Morari, “Moving horizon estimation for induction motors,” 3rd IEEE International Symposium on Sensorless Control for Electrical Drives, 2012.
- L. Ljung, “Asymptotic Behavior of the Extended Kalman Filter as a Parameter Estimator for Linear Systems,” IEEE Transactions on Automatic Control, vol. 24, no. 1, pp. 36–50, 1979.
- S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of multivariable dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667–1682, 2005.
- B. D. Anderson, “Exponential Stability of Linear Equations Arising in Adaptive Identification,” IEEE Transactions on Automatic Control, vol. 22, no. 1, pp. 83–88, 1977.
- K. S. Narendra and A. M. Annaswamy, “Persistent excitation in adaptive systems,” International Journal of Control, vol. 45, no. 1, pp. 127–160, 1987.
- J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A note on persistency of excitation,” Systems and Control Letters, vol. 54, no. 4, pp. 325–329, 2005.
- Y. M. Cho and R. Rajamani, “A systematic approach to adaptive observer synthesis for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 42, no. 4, pp. 534–537, 1997.
- P. Kudva and K. S. Narendra, “Synthesis of an adaptive observer using Lyapunov’s direct method,” International Journal of Control, vol. 18, no. 6, pp. 1201–1210, 1973.
- ——, “The Discrete Adaptive Observer.” in Proc. IEEE Conference on Decision and Control, 1974, pp. 307–312.
- G. Kreisselmeier, “Adaptive Observers with Exponential Rate of Convergence,” IEEE Transactions on Automatic Control, vol. 22, no. 1, pp. 2–8, 1977.
- M. Shahrokhi and M. Morari, “A Discrete Adaptive Observer and Identifier with Arbitrarily Fast Rate of Convergence,” IEEE Transactions on Automatic Control, vol. 27, no. 2, pp. 506–509, 1982.
- A. Ţiclea and G. Besançon, “Adaptive observer design for discrete time LTV systems,” International Journal of Control, vol. 89, no. 12, pp. 2385–2395, 2016.
- G. Bastin and M. R. Gevers, “Stable Adaptive Observers for Nonlinear Timevarying Systems,” IEEE Transactions on Automatic Control, vol. 33, no. 7, pp. 650–658, 1988.
- R. Marino and P. Tomei, “Adaptive Observers with Arbitrary Exponential Rate of Convergence for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 40, no. 7, pp. 1300–1304, 1995.
- Q. Zhang, “Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems,” IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 525–529, 2002.
- R. Marino, G. L. Santosuosso, and P. Tomei, “Robust adaptive observers for nonlinear systems with bounded disturbances,” IEEE Transactions on Automatic Control, vol. 46, no. 6, pp. 967–972, 2001.
- P. Tomei and R. Marino, “An Enhanced Feedback Adaptive Observer for Nonlinear Systems with Lack of Persistency of Excitation,” IEEE Transactions on Automatic Control, 2022.
- A. Dey and S. Bhasin, “Adaptive Observers for MIMO Discrete-Time LTI Systems,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 8708–8713, 2023.
- J. Wang, D. Efimov, and A. A. Bobtsov, “On Robust Parameter Estimation in Finite-Time without Persistence of Excitation,” IEEE Transactions on Automatic Control, vol. 65, no. 4, pp. 1731–1738, 2020.
- R. Ortega, V. Nikiforov, and D. Gerasimov, “On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes,” Annual Reviews in Control, vol. 50, pp. 278–293, 2020.
- A. Katiyar, S. B. Roy, and S. Bhasin, “Initial Excitation Based Robust Adaptive Observer for MIMO LTI Systems,” IEEE Transactions on Automatic Control, 2022.
- R. M. Johnstone, C. Richard Johnson, R. R. Bitmead, and B. D. Anderson, “Exponential convergence of recursive least squares with exponential forgetting factor,” Systems & Control Letters, vol. 2, no. 2, pp. 77–82, 1982.
- L. Simpson, A. Ghezzi, J. Asprion, and M. Diehl, “An Efficient Method for the Joint Estimation of System Parameters and Noise Covariances for Linear Time-Variant Systems,” in Proc. IEEE Conference on Decision and Control, 2023.
- J.-S. Brouillon, K. Moffat, F. Dörfler, and G. Ferrari-Trecate, “Robust online joint state/input/parameter estimation of linear systems,” in Proc. IEEE Conference on Decision and Control, 2022, pp. 2153–2158.
- J. D. Schiller, S. Muntwiler, J. Köhler, M. N. Zeilinger, and M. A. Müller, “A Lyapunov function for robust stability of moving horizon estimation,” IEEE Transactions on Automatic Control, 2023.
- D. A. Allan, “A Lyapunov-like Function for Analysis of Model Predictive Control and Moving Horizon Estimation,” Ph.D. dissertation, 2020.
- D. A. Allan and J. B. Rawlings, “Robust stability of full information estimation,” SIAM Journal on Control and Optimization, vol. 59, no. 5, pp. 3472–3497, 2021.
- D. Kouzoupis, R. Quirynen, F. Girrbach, and M. Diehl, “An efficient SQP algorithm for Moving Horizon Estimation with Huber penalties and multi-rate measurements,” Proc. IEEE Conference on Control Applications, pp. 1482–1487, 2016.
- K. Baumgärtner, A. Zanelli, and M. Diehl, “Zero-Order Moving Horizon Estimation,” in Proc. IEEE Conference on Decision and Control, 2019, pp. 4140–4146.
- S. Muntwiler, K. P. Wabersich, and M. N. Zeilinger, “Learning-based Moving Horizon Estimation through Differentiable Convex Optimization Layers,” Proc. Learning for Dynamics and Control Conference, vol. 168, pp. 153–165, 2021.
- D. G. Robertson, J. H. Lee, and J. B. Rawlings, “A Moving Horizon-Based Approach for Least-Squares Estimation,” AIChE Journal, vol. 42, no. 8, pp. 2209–2224, 1996.
- J. D. Schiller and M. A. Müller, “A moving horizon state and parameter estimation scheme with guaranteed robust convergence,” in Proc. 22nd IFAC World Congress, 2023, pp. 7341—-7346.
- D. Sui and T. A. Johansen, “Moving horizon observer with regularisation for detectable systems without persistence of excitation,” International Journal of Control, vol. 84, no. 6, pp. 1041–1054, 2011.
- K. Baumgärtner, R. Reiter, and M. Diehl, “Moving Horizon Estimation with Adaptive Regularization for Ill-Posed State and Parameter Estimation Problems,” in Proc. IEEE Conference on Decision and Control, 2022, pp. 2165–2171.
- S. Muntwiler, J. Köhler, and M. N. Zeilinger, “Nonlinear Functional Estimation: Functional Detectability and Full Information Estimation,” arXiv preprint arXiv:2312, 2023.
- D. A. Allan, J. Rawlings, and A. R. Teel, “Nonlinear detectability and incremental input/output-To-state stability,” SIAM Journal on Control and Optimization, vol. 59, no. 4, pp. 3017–3039, 2021.
- D. Limon, T. Alamo, D. M. Raimondo, D. M. De La Peña, J. M. Bravo, A. Ferramosca, and E. F. Camacho, “Input-to-state stability: A unifying framework for robust model predictive control,” Lecture Notes in Control and Information Sciences, vol. 384, pp. 1–26, 2009.
- W. A. Sethares, D. A. Lawrence, C. R. Johnson, and R. R. Bitmead, “Parameter Drift in LMS Adaptive Filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 4, pp. 868–879, 1986.
- B. D. Anderson, “Adaptive systems, lack of persistency of excitation and bursting phenomena,” Automatica, vol. 21, no. 3, pp. 247–258, may 1985.
- R. H. Middleton, G. C. Goodwin, D. J. Hill, and D. Q. Mayne, “Design Issues in Adaptive Control,” IEEE Transactions on Automatic Control, vol. 33, no. 1, pp. 50–58, 1988.
- S. Knüfer and M. A. Müller, “Robust Global Exponential Stability for Moving Horizon Estimation,” in Proc. IEEE Conference on Decision and Control, 2018, pp. 3477–3482.
- C. V. Rao, J. B. Rawlings, and J. H. Lee, “Constrained linear state estimation - A moving horizon approach,” Automatica, vol. 37, no. 10, pp. 1619–1628, 2001.
- C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations,” IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 246–258, 2003.
- N. Deniz, M. Murillo, G. Sanchez, and L. Giovanini, “Robust stability of moving horizon estimation for non-linear systems with bounded disturbances using adaptive arrival cost,” IET Control Theory & Applications, vol. 14, no. 18, pp. 2879–2888, 2020.
- N. Deniz, G. Sanchez, M. Murillo, J. Benavidez, and L. Giovanini, “Nonlinear Moving Horizon Estimation: Adaptive Arrival Cost with Prescribed Conditioning Number,” in Proc. 19th Workshop on Information Processing and Control, RPIC 2021. Institute of Electrical and Electronics Engineers Inc., 2021.
- N. N. Deniz, M. H. Murillo, G. Sanchez, and L. L. Giovanini, “Adaptive polytopic estimation for nonlinear systems under bounded disturbances using moving horizon,” arXiv preprint arXiv:1906.10040v2, 2019.
- W. Cao, C. Liu, Z. Lan, Y. Piao, and S. E. Li, “Robust Bayesian Inference for Moving Horizon Estimation,” arXiv preprint arXiv:2210.02166, 2022.
- C. E. Rohrs, “Adaptive control in the presence of unmodeled dynamics,” Ph.D. dissertation, 1982.
- H. Ohmori and A. Sano, “New adaptive law using regularization parameters for robust adaptation,” Proc. IEEE Conference on Decision and Control, vol. 2, pp. 1563–1565, 1989.
- P. Ioannou and K. Tsakalis, “Robust discrete-time adaptive control,” Adaptive and learning systems: Theory and applications, pp. 73–85, 1986.
- M. Darouach, “Existence and design of functional observers for linear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 940–943, 2000.
- M. Darouach and T. Fernando, “Functional Detectability and Asymptotic Functional Observer Design,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 975–990, 2023.
- A. Carron, S. Bodmer, L. Vogel, R. Zurbrugg, D. Helm, R. Rickenbach, S. Muntwiler, J. Sieber, and M. N. Zeilinger, “Chronos and CRS: Design of a miniature car-like robot and a software framework for single and multi-agent robotics and control,” in Proc. IEEE International Conference on Robotics and Automation, 2023, pp. 1371–1378.
- J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
- A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2005.