Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trust-Region Neural Moving Horizon Estimation for Robots (2309.05955v4)

Published 12 Sep 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Accurate disturbance estimation is essential for safe robot operations. The recently proposed neural moving horizon estimation (NeuroMHE), which uses a portable neural network to model the MHE's weightings, has shown promise in further pushing the accuracy and efficiency boundary. Currently, NeuroMHE is trained through gradient descent, with its gradient computed recursively using a Kalman filter. This paper proposes a trust-region policy optimization method for training NeuroMHE. We achieve this by providing the second-order derivatives of MHE, referred to as the MHE Hessian. Remarkably, we show that much of computation already used to obtain the gradient, especially the Kalman filter, can be efficiently reused to compute the MHE Hessian. This offers linear computational complexity relative to the MHE horizon. As a case study, we evaluate the proposed trust region NeuroMHE on real quadrotor flight data for disturbance estimation. Our approach demonstrates highly efficient training in under 5 min using only 100 data points. It outperforms a state-of-the-art neural estimator by up to 68.1% in force estimation accuracy, utilizing only 1.4% of its network parameters. Furthermore, our method showcases enhanced robustness to network initialization compared to the gradient descent counterpart.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. L. Corradini and G. Orlando, “Robust tracking control of mobile robots in the presence of uncertainties in the dynamical model,” Journal of robotic systems, vol. 18, no. 6, pp. 317–323, 2001.
  2. C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar, “Influence of aerodynamics and proximity effects in quadrotor flight,” in Experimental Robotics: The 13th International Symposium on Experimental Robotics.   Springer, 2013, pp. 289–302.
  3. E. Hashemi, M. Pirani, A. Khajepour, B. Fidan, A. Kasaiezadeh, S.-K. Chen, and B. Litkouhi, “Integrated estimation structure for the tire friction forces in ground vehicles,” in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).   IEEE, 2016, pp. 1657–1662.
  4. Z. Chu, F. Wang, T. Lei, and C. Luo, “Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 108–120, 2022.
  5. P. Coelho and U. Nunes, “Path-following control of mobile robots in presence of uncertainties,” IEEE Transactions on Robotics, vol. 21, no. 2, pp. 252–261, 2005.
  6. B. S. Park, S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty,” IEEE Transactions on Control Systems Technology, vol. 17, no. 1, pp. 207–214, 2008.
  7. B. Yüksel, C. Secchi, H. H. Bülthoff, and A. Franchi, “A nonlinear force observer for quadrotors and application to physical interactive tasks,” in 2014 IEEE/ASME international conference on advanced intelligent mechatronics.   IEEE, 2014, pp. 433–440.
  8. T. Tomić and S. Haddadin, “A unified framework for external wrench estimation, interaction control and collision reflexes for flying robots,” in 2014 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2014, pp. 4197–4204.
  9. J. Huang, S. Ri, T. Fukuda, and Y. Wang, “A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2480–2487, 2018.
  10. D. Hentzen, T. Stastny, R. Siegwart, and R. Brockers, “Disturbance estimation and rejection for high-precision multirotor position control,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 2797–2804.
  11. C. D. McKinnon and A. P. Schoellig, “Estimating and reacting to forces and torques resulting from common aerodynamic disturbances acting on quadrotors,” Robotics and Autonomous Systems, vol. 123, p. 103314, 2020.
  12. X. Liu, C. Yang, Z. Chen, M. Wang, and C.-Y. Su, “Neuro-adaptive observer based control of flexible joint robot,” Neurocomputing, vol. 275, pp. 73–82, 2018.
  13. L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza, “Neurobem: Hybrid aerodynamic quadrotor model,” Proceedings of Robotics: Science and Systems XVII, p. 42, 2021.
  14. G. Shi, W. Hönig, X. Shi, Y. Yue, and S.-J. Chung, “Neural-swarm2: Planning and control of heterogeneous multirotor swarms using learned interactions,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1063–1079, 2021.
  15. B. Wang, Z. Ma, S. Lai, and L. Zhao, “Neural moving horizon estimation for robust flight control,” arXiv preprint arXiv:2206.10397, 2022.
  16. T. Kraus, H. J. Ferreau, E. Kayacan, H. Ramon, J. De Baerdemaeker, M. Diehl, and W. Saeys, “Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles,” Computers and electronics in agriculture, vol. 98, pp. 25–33, 2013.
  17. B. Wang, Z. Ma, S. Lai, L. Zhao, and T. H. Lee, “Differentiable moving horizon estimation for robust flight control,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 3563–3568.
  18. A. Papadimitriou, H. Jafari, S. S. Mansouri, and G. Nikolakopoulos, “External force estimation and disturbance rejection for micro aerial vehicles,” Expert Systems with Applications, vol. 200, p. 116883, 2022.
  19. D. G. Robertson, J. H. Lee, and J. B. Rawlings, “A moving horizon-based approach for least-squares estimation,” AIChE Journal, vol. 42, no. 8, pp. 2209–2224, 1996.
  20. H. N. Esfahani, A. B. Kordabad, and S. Gros, “Reinforcement learning based on mpc/mhe for unmodeled and partially observable dynamics,” in 2021 American Control Conference (ACC).   IEEE, 2021, pp. 2121–2126.
  21. S. Muntwiler, K. P. Wabersich, and M. N. Zeilinger, “Learning-based moving horizon estimation through differentiable convex optimization layers,” in Learning for Dynamics and Control Conference.   PMLR, 2022, pp. 153–165.
  22. J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,” in International conference on machine learning.   PMLR, 2015, pp. 1889–1897.
  23. K. Cao and L. Xie, “Trust-region inverse reinforcement learning,” IEEE Transactions on Automatic Control, 2023.
  24. A. Alessandri, M. Baglietto, G. Battistelli, and V. Zavala, “Advances in moving horizon estimation for nonlinear systems,” in 49th IEEE Conference on Decision and Control (CDC).   IEEE, 2010, pp. 5681–5688.
  25. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.
  26. J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.