Papers
Topics
Authors
Recent
2000 character limit reached

A kernel-based least-squares collocation method for surface diffusion

Published 8 Sep 2021 in math.NA and cs.NA | (2109.03409v2)

Abstract: There are plenty of applications and analysis for time-independent elliptic partial differential equations in the literature hinting at the benefits of overtesting by using more collocation conditions than the number of basis functions. Overtesting not only reduces the problem size, but is also known to be necessary for stability and convergence of widely used unsymmetric Kansa-type strong-form collocation methods. We consider kernel-based meshfree methods, which is a method of lines with collocation and overtesting spatially, for solving parabolic partial differential equations on surfaces without parametrization. In this paper, we extend the time-independent convergence theories for overtesting techniques to the parabolic equations on smooth and closed surfaces.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.