Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proportional-Integral Projected Gradient Method for Infeasibility Detection in Conic Optimization (2109.02756v2)

Published 6 Sep 2021 in math.OC, cs.SY, and eess.SY

Abstract: A constrained optimization problem is primal infeasible if its constraints cannot be satisfied, and dual infeasible if the constraints of its dual problem cannot be satisfied. We propose a novel iterative method, named proportional-integral projected gradient method (PIPG), for detecting primal and dual infeasiblity in convex optimization with quadratic objective function and conic constraints. The iterates of PIPG either asymptotically provide a proof of primal or dual infeasibility, or asymptotically satisfy a set of primal-dual optimality conditions. Unlike existing methods, PIPG does not compute matrix inverse, which makes it better suited for large-scale and real-time applications. We demonstrate the application of PIPG in quasiconvex and mixed-integer optimization using examples in constrained optimal control.

Citations (3)

Summary

We haven't generated a summary for this paper yet.