Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog Act Detection (2109.01267v1)

Published 3 Sep 2021 in cs.CL

Abstract: The success of interactive dialog systems is usually associated with the quality of the spoken language understanding (SLU) task, which mainly identifies the corresponding dialog acts and slot values in each turn. By treating utterances in isolation, most SLU systems often overlook the semantic context in which a dialog act is expected. The act dependency between turns is non-trivial and yet critical to the identification of the correct semantic representations. Previous works with limited context awareness have exposed the inadequacy of dealing with complexity in multiproned user intents, which are subject to spontaneous change during turn transitions. In this work, we propose to enhance SLU in multi-turn dialogs, employing a context-aware hierarchical BERT fusion Network (CaBERT-SLU) to not only discern context information within a dialog but also jointly identify multiple dialog acts and slots in each utterance. Experimental results show that our approach reaches new state-of-the-art (SOTA) performances in two complicated multi-turn dialogue datasets with considerable improvements compared with previous methods, which only consider single utterances for multiple intents and slot filling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ting-Wei Wu (10 papers)
  2. Ruolin Su (7 papers)
  3. Biing-Hwang Juang (8 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.