Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Lorentzian quantum cosmology goes simplicial (2109.00875v4)

Published 2 Sep 2021 in gr-qc and hep-th

Abstract: We employ the methods of discrete (Lorentzian) Regge calculus for analysing Lorentzian quantum cosmology models with a special focus on discrete analogues of the no-boundary proposal for the early universe. We use a simple 4-polytope, a subdivided 4-polytope and shells of discrete 3-spheres as triangulations to model a closed universe with cosmological constant, and examine the semiclassical path integral for these different choices. We find that the shells give good agreement with continuum results for small values of the scale factor and in particular for finer discretisations of the boundary 3-sphere, while the simple and subdivided 4-polytopes can only be compared with the continuum in certain regimes, and in particular are not able to capture a transition from Euclidean geometry with small scale factor to a large Lorentzian one. Finally, we consider a closed universe filled with dust particles and discretised by shells of 3-spheres. This model can approximate the continuum case quite well. Our results embed the no-boundary proposal in a discrete setting where it is possibly more naturally defined, and prepare for its discussion within the realm of spin foams.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.