Papers
Topics
Authors
Recent
2000 character limit reached

Fluctuations and correlations for products of real asymmetric random matrices

Published 1 Sep 2021 in math.PR, math-ph, and math.MP | (2109.00322v1)

Abstract: We study the real eigenvalue statistics of products of independent real Ginibre random matrices. These are matrices all of whose entries are real i.i.d. standard Gaussian random variables. For such product ensembles, we demonstrate the asymptotic normality of suitably normalised linear statistics of the real eigenvalues and compute the limiting variance explicitly in both global and mesoscopic regimes. A key part of our proof establishes uniform decorrelation estimates for the related Pfaffian point process, thereby allowing us to exploit weak dependence of the real eigenvalues to give simple and quick proofs of the central limit theorems under quite general conditions. We also establish the universality of these point processes. We compute the asymptotic limit of all correlation functions of the real eigenvalues in the bulk, origin and spectral edge regimes. By a suitable strengthening of the convergence at the edge, we also obtain the limiting fluctuations of the largest real eigenvalue. Near the origin we find new limiting distributions characterising the smallest positive real eigenvalue.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.