Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Protection Method of Trained CNN Model Using Feature Maps Transformed With Secret Key From Unauthorized Access (2109.00224v1)

Published 1 Sep 2021 in cs.CV

Abstract: In this paper, we propose a model protection method for convolutional neural networks (CNNs) with a secret key so that authorized users get a high classification accuracy, and unauthorized users get a low classification accuracy. The proposed method applies a block-wise transformation with a secret key to feature maps in the network. Conventional key-based model protection methods cannot maintain a high accuracy when a large key space is selected. In contrast, the proposed method not only maintains almost the same accuracy as non-protected accuracy, but also has a larger key space. Experiments were carried out on the CIFAR-10 dataset, and results show that the proposed model protection method outperformed the previous key-based model protection methods in terms of classification accuracy, key space, and robustness against key estimation attacks and fine-tuning attacks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.