Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ovarian Cancer Prediction from Ovarian Cysts Based on TVUS Using Machine Learning Algorithms (2108.13387v1)

Published 30 Aug 2021 in cs.LG, eess.IV, q-bio.BM, and stat.ML

Abstract: Ovarian Cancer (OC) is type of female reproductive malignancy which can be found among young girls and mostly the women in their fertile or reproductive. There are few number of cysts are dangerous and may it cause cancer. So, it is very important to predict and it can be from different types of screening are used for this detection using Transvaginal Ultrasonography (TVUS) screening. In this research, we employed an actual datasets called PLCO with TVUS screening and three ML techniques, respectively Random Forest KNN, and XGBoost within three target variables. We obtained a best performance from this algorithms as far as accuracy, recall, f1 score and precision with the approximations of 99.50%, 99.50%, 99.49% and 99.50% individually. The AUC score of 99.87%, 98.97% and 99.88% are observed in these Random Forest, KNN and XGB algorithms .This approach helps assist physicians and suspects in identifying ovarian risks early on, reducing ovarian malignancy-related complications and deaths.

Citations (7)

Summary

We haven't generated a summary for this paper yet.