Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trustworthy AI for Process Automation on a Chylla-Haase Polymerization Reactor (2108.13381v1)

Published 30 Aug 2021 in cs.AI, cs.LG, cs.NE, cs.SE, cs.SY, and eess.SY

Abstract: In this paper, genetic programming reinforcement learning (GPRL) is utilized to generate human-interpretable control policies for a Chylla-Haase polymerization reactor. Such continuously stirred tank reactors (CSTRs) with jacket cooling are widely used in the chemical industry, in the production of fine chemicals, pigments, polymers, and medical products. Despite appearing rather simple, controlling CSTRs in real-world applications is quite a challenging problem to tackle. GPRL utilizes already existing data from the reactor and generates fully automatically a set of optimized simplistic control strategies, so-called policies, the domain expert can choose from. Note that these policies are white-box models of low complexity, which makes them easy to validate and implement in the target control system, e.g., SIMATIC PCS 7. However, despite its low complexity the automatically-generated policy yields a high performance in terms of reactor temperature control deviation, which we empirically evaluate on the original reactor template.

Summary

We haven't generated a summary for this paper yet.