Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Radio Labellings of Block Graphs and Line Graphs of Trees

Published 29 Aug 2021 in math.CO and cs.DM | (2108.12754v1)

Abstract: A radio labeling of a graph $G$ is a mapping $f$ : $V(G) \rightarrow {0, 1, 2,...}$ such that $|f(u)-f(v)| \geq diam(G) + 1 - d(u,v)$ holds for every pair of vertices $u$ and $v$, where $diam(G)$ is the diameter of $G$ and $d(u,v)$ is the distance between $u$ and $v$ in $G$. The radio number of $G$, denoted by $rn(G)$, is the smallest $t$ such that $G$ admits a radio labeling with $t=\max{|f(v)-f(u)|: v, u \in V(G)}$. A block graph is a graph such that each block (induced maximal 2-connected subgraph) is a complete graph. In this paper, a lower bound for the radio number of block graphs is established. The block graph which achieves this bound is called a lower bound block graph. We prove three necessary and sufficient conditions for lower bound block graphs. Moreover, we give three sufficient conditions for a graph to be a lower bound block graph. Applying the established bound and conditions, we show that several families of block graphs are lower bound block graphs, including the level-wise regular block graphs and the extended star of blocks. The line graph of a graph $G(V,E)$ has $E(G)$ as the vertex set, where two vertices are adjacent if they are incident edges in $G$. We extend our results to trees as trees and its line graphs are block graphs. We prove that if a tree is a lower bound block graph then, under certain conditions, its line graph is also a lower bound block graph, and vice versa. Consequently, we show that the line graphs of many known lower bound trees, excluding paths, are lower bound block graphs.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.