Papers
Topics
Authors
Recent
2000 character limit reached

Blind Image Decomposition

Published 25 Aug 2021 in cs.CV and eess.IV | (2108.11364v3)

Abstract: We propose and study a novel task named Blind Image Decomposition (BID), which requires separating a superimposed image into constituent underlying images in a blind setting, that is, both the source components involved in mixing as well as the mixing mechanism are unknown. For example, rain may consist of multiple components, such as rain streaks, raindrops, snow, and haze. Rainy images can be treated as an arbitrary combination of these components, some of them or all of them. How to decompose superimposed images, like rainy images, into distinct source components is a crucial step toward real-world vision systems. To facilitate research on this new task, we construct multiple benchmark datasets, including mixed image decomposition across multiple domains, real-scenario deraining, and joint shadow/reflection/watermark removal. Moreover, we propose a simple yet general Blind Image Decomposition Network (BIDeN) to serve as a strong baseline for future work. Experimental results demonstrate the tenability of our benchmarks and the effectiveness of BIDeN.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.