Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Face Photo-Sketch Recognition Using Bidirectional Collaborative Synthesis Network (2108.09898v1)

Published 23 Aug 2021 in cs.CV and cs.LG

Abstract: This research features a deep-learning based framework to address the problem of matching a given face sketch image against a face photo database. The problem of photo-sketch matching is challenging because 1) there is large modality gap between photo and sketch, and 2) the number of paired training samples is insufficient to train deep learning based networks. To circumvent the problem of large modality gap, our approach is to use an intermediate latent space between the two modalities. We effectively align the distributions of the two modalities in this latent space by employing a bidirectional (photo -> sketch and sketch -> photo) collaborative synthesis network. A StyleGAN-like architecture is utilized to make the intermediate latent space be equipped with rich representation power. To resolve the problem of insufficient training samples, we introduce a three-step training scheme. Extensive evaluation on public composite face sketch database confirms superior performance of our method compared to existing state-of-the-art methods. The proposed methodology can be employed in matching other modality pairs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.