Anderson acceleration for a regularized Bingham model
Abstract: This paper studies a finite element discretization of the regularized Bingham equations that describe viscoplastic flow. An efficient nonlinear solver for the discrete model is then proposed and analyzed. The solver is based on Anderson acceleration (AA) applied to a Picard iteration, and we show accelerated convergence of the method by applying AA theory (recently developed by the authors) to the iteration, after showing sufficient smoothness properties of the associated fixed point operator. Numerical tests of spatial convergence are provided, as are results of the model for 2D and 3D driven cavity simulations. For each numerical test, the proposed nonlinear solver is also tested and shown to be very effective and robust with respect to the regularization parameter as it goes to zero.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.