Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlled GAN-Based Creature Synthesis via a Challenging Game Art Dataset -- Addressing the Noise-Latent Trade-Off (2108.08922v2)

Published 19 Aug 2021 in cs.CV

Abstract: The state-of-the-art StyleGAN2 network supports powerful methods to create and edit art, including generating random images, finding images "like" some query, and modifying content or style. Further, recent advancements enable training with small datasets. We apply these methods to synthesize card art, by training on a novel Yu-Gi-Oh dataset. While noise inputs to StyleGAN2 are essential for good synthesis, we find that coarse-scale noise interferes with latent variables on this dataset because both control long-scale image effects. We observe over-aggressive variation in art with changes in noise and weak content control via latent variable edits. Here, we demonstrate that training a modified StyleGAN2, where coarse-scale noise is suppressed, removes these unwanted effects. We obtain a superior FID; changes in noise result in local exploration of style; and identity control is markedly improved. These results and analysis lead towards a GAN-assisted art synthesis tool for digital artists of all skill levels, which can be used in film, games, or any creative industry for artistic ideation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.