Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Scene Graphs for Human-Object Interaction Detection (2108.08584v1)

Published 19 Aug 2021 in cs.CV

Abstract: Human-Object Interaction (HOI) detection is a fundamental visual task aiming at localizing and recognizing interactions between humans and objects. Existing works focus on the visual and linguistic features of humans and objects. However, they do not capitalise on the high-level and semantic relationships present in the image, which provides crucial contextual and detailed relational knowledge for HOI inference. We propose a novel method to exploit this information, through the scene graph, for the Human-Object Interaction (SG2HOI) detection task. Our method, SG2HOI, incorporates the SG information in two ways: (1) we embed a scene graph into a global context clue, serving as the scene-specific environmental context; and (2) we build a relation-aware message-passing module to gather relationships from objects' neighborhood and transfer them into interactions. Empirical evaluation shows that our SG2HOI method outperforms the state-of-the-art methods on two benchmark HOI datasets: V-COCO and HICO-DET. Code will be available at https://github.com/ht014/SG2HOI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tao He (62 papers)
  2. Lianli Gao (99 papers)
  3. Jingkuan Song (115 papers)
  4. Yuan-Fang Li (90 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub