Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

NeuralSound: Learning-based Modal Sound Synthesis With Acoustic Transfer (2108.07425v4)

Published 17 Aug 2021 in cs.SD, cs.GR, and eess.AS

Abstract: We present a novel learning-based modal sound synthesis approach that includes a mixed vibration solver for modal analysis and an end-to-end sound radiation network for acoustic transfer. Our mixed vibration solver consists of a 3D sparse convolution network and a Locally Optimal Block Preconditioned Conjugate Gradient module (LOBPCG) for iterative optimization. Moreover, we highlight the correlation between a standard modal vibration solver and our network architecture. Our radiation network predicts the Far-Field Acoustic Transfer maps (FFAT Maps) from the surface vibration of the object. The overall running time of our learning method for any new object is less than one second on a GTX 3080 Ti GPU while maintaining a high sound quality close to the ground truth that is computed using standard numerical methods. We also evaluate the numerical accuracy and perceptual accuracy of our sound synthesis approach on different objects corresponding to various materials.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.