Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On The Compensation Between Magnitude and Phase in Speech Separation (2108.05470v2)

Published 11 Aug 2021 in cs.SD and eess.AS

Abstract: Deep neural network (DNN) based end-to-end optimization in the complex time-frequency (T-F) domain or time domain has shown considerable potential in monaural speech separation. Many recent studies optimize loss functions defined solely in the time or complex domain, without including a loss on magnitude. Although such loss functions typically produce better scores if the evaluation metrics are objective time-domain metrics, they however produce worse scores on speech quality and intelligibility metrics and usually lead to worse speech recognition performance, compared with including a loss on magnitude. While this phenomenon has been experimentally observed by many studies, it is often not accurately explained and there lacks a thorough understanding on its fundamental cause. This paper provides a novel view from the perspective of the implicit compensation between estimated magnitude and phase. Analytical results based on monaural speech separation and robust automatic speech recognition (ASR) tasks in noisy-reverberant conditions support the validity of our view.

Citations (67)

Summary

We haven't generated a summary for this paper yet.