Feynman Integrals in Dimensional Regularization and Extensions of Calabi-Yau Motives
Abstract: We provide a comprehensive summary of concepts from Calabi-Yau motives relevant to the computation of multi-loop Feynman integrals. From this we derive several consequences for multi-loop integrals in general, and we illustrate them on the example of multi-loop banana integrals. For example, we show how Griffiths transversality, known from the theory of variation of mixed Hodge structures, leads quite generically to a set of quadratic relations among maximal cut integrals associated to Calabi-Yau motives. These quadratic relations then naturally lead to a compact expression for $l$-loop banana integrals in $D=2$ dimensions in terms of an integral over a period of a Calabi-Yau $(l-1)$-fold. This new integral representation generalizes in a natural way the known representations for $l\le 3$ involving logarithms with square root arguments and iterated integrals of Eisenstein series. In a second part, we show how the results obtained by some of the authors in earlier work can be extended to dimensional regularization. We present a method to obtain the differential equations for banana integrals with an arbitrary number of loops in dimensional regularization without the need to solve integration-by-parts relations. We also present a compact formula for the leading asymptotics of banana integrals with an arbitrary number of loops in the large momentum limit. This generalizes the novel $\widehat{\Gamma}$-class introduced by some of the authors to dimensional regularization and provides a convenient boundary condition to solve the differential equations for the banana integrals. As an application, we present for the first time numerical results for equal-mass banana integrals with up to four loops and up to second order in the dimensional regulator.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.