Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Better Loss for Visual-Textual Grounding (2108.05308v2)

Published 11 Aug 2021 in cs.CV and cs.LG

Abstract: Given a textual phrase and an image, the visual grounding problem is the task of locating the content of the image referenced by the sentence. It is a challenging task that has several real-world applications in human-computer interaction, image-text reference resolution, and video-text reference resolution. In the last years, several works have addressed this problem by proposing more and more large and complex models that try to capture visual-textual dependencies better than before. These models are typically constituted by two main components that focus on how to learn useful multi-modal features for grounding and how to improve the predicted bounding box of the visual mention, respectively. Finding the right learning balance between these two sub-tasks is not easy, and the current models are not necessarily optimal with respect to this issue. In this work, we propose a loss function based on bounding boxes classes probabilities that: (i) improves the bounding boxes selection; (ii) improves the bounding boxes coordinates prediction. Our model, although using a simple multi-modal feature fusion component, is able to achieve a higher accuracy than state-of-the-art models on two widely adopted datasets, reaching a better learning balance between the two sub-tasks mentioned above.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Davide Rigoni (6 papers)
  2. Luciano Serafini (44 papers)
  3. Alessandro Sperduti (31 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.