Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Towards better data discovery and collection with flow-based programming (2108.04105v2)

Published 9 Aug 2021 in cs.SE and cs.LG

Abstract: Despite huge successes reported by the field of machine learning, such as voice assistants or self-driving cars, businesses still observe very high failure rate when it comes to deployment of ML in production. We argue that part of the reason is infrastructure that was not designed for data-oriented activities. This paper explores the potential of flow-based programming (FBP) for simplifying data discovery and collection in software systems. We compare FBP with the currently prevalent service-oriented paradigm to assess characteristics of each paradigm in the context of ML deployment. We develop a data processing application, formulate a subsequent ML deployment task, and measure the impact of the task implementation within both programming paradigms. Our main conclusion is that FBP shows great potential for providing data-centric infrastructural benefits for deployment of ML. Additionally, we provide an insight into the current trend that prioritizes model development over data quality management.

Citations (5)

Summary

We haven't generated a summary for this paper yet.