Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Compactness and rigidity of self-shrinking surfaces (2108.03919v3)

Published 9 Aug 2021 in math.DG

Abstract: The entropy functional introduced by Colding and Minicozzi plays a fundamental role in the analysis of mean curvature flow. However, unlike the hypersurface case, relatively little about the entropy is known in the higher-codimension case. In this note, we use measure-theoretical techniques and rigidity results for self-shrinkers to prove a compactness theorem for a family of self-shrinking surfaces with low entropy. Based on this, we prove the existence of entropy minimizers among self-shrinking surfaces and improve some rigidity results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.