Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

On the rigidity of mean convex self-shrinkers (1603.09435v1)

Published 31 Mar 2016 in math.DG

Abstract: Self-shrinkers model singularities of the mean curvature flow; they are defined as the special solutions that contract homothetically under the flow. Colding-Ilmanen-Minicozzi showed that cylindrical self-shrinkers are rigid in a strong sense - that is, any self-shrinker that is mean convex with uniformly bounded curvature on a large, but compact, set must be a round cylinder. Using this result, Colding and Minicozzi were able to establish uniqueness of blowups at cylindrical singularities, and provide a detailed description of the singular set of generic mean curvature flows. In this paper, we show that the bounded curvature assumption is unnecessary for the rigidity of the cylinder if either n is at most 6, or if the mean curvature is bounded below by a positive constant. These results follow from curvature estimates that we prove for strictly mean convex self-shrinkers. We also obtain a rigidity theorem in all dimensions for graphical self-shrinkers, and curvature estimates for translators of the mean curvature flow.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.